Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Saturation characteristics of InGaAsP-InP bulk SOA

Identifieur interne : 003972 ( Main/Repository ); précédent : 003971; suivant : 003973

Saturation characteristics of InGaAsP-InP bulk SOA

Auteurs : RBID : Pascal:10-0417240

Descripteurs français

English descriptors

Abstract

Semiconductor optical amplifiers (SOAs) can be used as linear in-line amplifiers for extended-reach passive optical networks, or as gain/phase-switchable devices. For these applications, gain, bandwidth and saturation power are important. The saturation power can be increased by decreasing the confinement factor and by increasing the length such that the overall gain remains constant. In this paper we investigate the saturation characteristics of 1.55 μm InGaAsP-InP bulk SOA. We do so by using the physically based simulation tool ATLAS. The simulation tool ATLAS supports simulation of semiconductor lasers only, however making the mirror reflectivities small, the lasing threshold is increased such that lasers are essentially reduced to amplifiers. Next, for investigating the saturation characteristics of SOA, the amplifier gain should be influenced by injecting an optical light power. However, ATLAS cannot simulate the required source directly. Instead, we use in the electron rate equation simultaneously two competing independent models for spontaneous radiative recombination, namely the so-called general model (total recombination rate BnT p with bimolecular recombination coefficient B, electron and hole concentrations nT and p) and the standard model for recombination due to amplified spontaneous emission into the mode under consideration (determined by the product of Fermi functions for electrons and holes). In the photon rate equation, only the standard model is used. We then increase B, and thus simulate a decrease of the carrier concentration that would physically result from an external optical signal. We show that under conditions of constant injection current and device length an n- doping (p-doping) of the active layer increases (decreases) the input saturation power. In addition we observe that for constant injection current and amplifier gain, a p-doping (n-doping) of the active layer increases (decreases) both the input and output saturation powers because of an reduced (slightly increased) Auger-dominated carrier lifetime.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0417240

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Saturation characteristics of InGaAsP-InP bulk SOA</title>
<author>
<name sortKey="Kapoor, Amita" uniqKey="Kapoor A">Amita Kapoor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shaheed Rajguru College of Applied Sciences for Women, University of Delhi</s1>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Shaheed Rajguru College of Applied Sciences for Women, University of Delhi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Enakshi K" uniqKey="Sharma E">Enakshi K. Sharma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dept. of Electronic Sciences, University of Delhi South Campus</s1>
<s2>New Delhi</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>New Delhi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Freude, Wolfgang" uniqKey="Freude W">Wolfgang Freude</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology</s1>
<s2>Karlsruhe</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leuthold, Juerg" uniqKey="Leuthold J">Juerg Leuthold</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology</s1>
<s2>Karlsruhe</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0417240</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0417240 INIST</idno>
<idno type="RBID">Pascal:10-0417240</idno>
<idno type="wicri:Area/Main/Corpus">003E61</idno>
<idno type="wicri:Area/Main/Repository">003972</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amplified spontaneous emission</term>
<term>Binary compounds</term>
<term>Carrier lifetime</term>
<term>Gallium Arsenides</term>
<term>Gallium Phosphides</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Indium Phosphides</term>
<term>Injection current</term>
<term>Mirrors</term>
<term>Optical communication</term>
<term>Optical fiber networks</term>
<term>Output power</term>
<term>Passive networks</term>
<term>Quaternary compounds</term>
<term>Radiative recombination</term>
<term>Rate equation</term>
<term>Reflectivity</term>
<term>Semiconductor lasers</term>
<term>Semiconductor optical amplifiers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recombinaison radiative</term>
<term>Emission spontanée amplifiée</term>
<term>Courant injection</term>
<term>Amplificateur optique semiconducteur</term>
<term>Réseau fibre optique</term>
<term>Laser semiconducteur</term>
<term>Miroir</term>
<term>Télécommunication optique</term>
<term>Facteur réflexion</term>
<term>Puissance sortie</term>
<term>Durée vie porteur charge</term>
<term>Composé quaternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Phosphure</term>
<term>Gallium Phosphure</term>
<term>Indium Arséniure</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Réseau passif</term>
<term>InGaAsP</term>
<term>As Ga In P</term>
<term>In P</term>
<term>InP</term>
<term>0130C</term>
<term>4255P</term>
<term>4279S</term>
<term>Equation bilan transfert énergie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Semiconductor optical amplifiers (SOAs) can be used as linear in-line amplifiers for extended-reach passive optical networks, or as gain/phase-switchable devices. For these applications, gain, bandwidth and saturation power are important. The saturation power can be increased by decreasing the confinement factor and by increasing the length such that the overall gain remains constant. In this paper we investigate the saturation characteristics of 1.55 μm InGaAsP-InP bulk SOA. We do so by using the physically based simulation tool ATLAS. The simulation tool ATLAS supports simulation of semiconductor lasers only, however making the mirror reflectivities small, the lasing threshold is increased such that lasers are essentially reduced to amplifiers. Next, for investigating the saturation characteristics of SOA, the amplifier gain should be influenced by injecting an optical light power. However, ATLAS cannot simulate the required source directly. Instead, we use in the electron rate equation simultaneously two competing independent models for spontaneous radiative recombination, namely the so-called general model (total recombination rate Bn
<sub>T</sub>
p with bimolecular recombination coefficient B, electron and hole concentrations n
<sub>T</sub>
and p) and the standard model for recombination due to amplified spontaneous emission into the mode under consideration (determined by the product of Fermi functions for electrons and holes). In the photon rate equation, only the standard model is used. We then increase B, and thus simulate a decrease of the carrier concentration that would physically result from an external optical signal. We show that under conditions of constant injection current and device length an n- doping (p-doping) of the active layer increases (decreases) the input saturation power. In addition we observe that for constant injection current and amplifier gain, a p-doping (n-doping) of the active layer increases (decreases) both the input and output saturation powers because of an reduced (slightly increased) Auger-dominated carrier lifetime.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7597</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Saturation characteristics of InGaAsP-InP bulk SOA</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Physics and simulation of optoelectronic devices XVIII : 25-28 January 2010, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KAPOOR (Amita)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHARMA (Enakshi K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FREUDE (Wolfgang)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEUTHOLD (Juerg)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>WITZIGMANN (Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Shaheed Rajguru College of Applied Sciences for Women, University of Delhi</s1>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dept. of Electronic Sciences, University of Delhi South Campus</s1>
<s2>New Delhi</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology</s1>
<s2>Karlsruhe</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>75971I.1-75971I.10</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7993-8</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-7993-4</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174681670330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0417240</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Semiconductor optical amplifiers (SOAs) can be used as linear in-line amplifiers for extended-reach passive optical networks, or as gain/phase-switchable devices. For these applications, gain, bandwidth and saturation power are important. The saturation power can be increased by decreasing the confinement factor and by increasing the length such that the overall gain remains constant. In this paper we investigate the saturation characteristics of 1.55 μm InGaAsP-InP bulk SOA. We do so by using the physically based simulation tool ATLAS. The simulation tool ATLAS supports simulation of semiconductor lasers only, however making the mirror reflectivities small, the lasing threshold is increased such that lasers are essentially reduced to amplifiers. Next, for investigating the saturation characteristics of SOA, the amplifier gain should be influenced by injecting an optical light power. However, ATLAS cannot simulate the required source directly. Instead, we use in the electron rate equation simultaneously two competing independent models for spontaneous radiative recombination, namely the so-called general model (total recombination rate Bn
<sub>T</sub>
p with bimolecular recombination coefficient B, electron and hole concentrations n
<sub>T</sub>
and p) and the standard model for recombination due to amplified spontaneous emission into the mode under consideration (determined by the product of Fermi functions for electrons and holes). In the photon rate equation, only the standard model is used. We then increase B, and thus simulate a decrease of the carrier concentration that would physically result from an external optical signal. We show that under conditions of constant injection current and device length an n- doping (p-doping) of the active layer increases (decreases) the input saturation power. In addition we observe that for constant injection current and amplifier gain, a p-doping (n-doping) of the active layer increases (decreases) both the input and output saturation powers because of an reduced (slightly increased) Auger-dominated carrier lifetime.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04B08</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Emission spontanée amplifiée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Amplified spontaneous emission</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Courant injection</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Injection current</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Corriente inyección</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Amplificateur optique semiconducteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Semiconductor optical amplifiers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Réseau fibre optique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Optical fiber networks</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Miroir</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Mirrors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Télécommunication optique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optical communication</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Output power</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>43</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>43</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>55</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>55</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>56</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>56</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Réseau passif</s0>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Passive networks</s0>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InGaAsP</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>4279S</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Equation bilan transfert énergie</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Rate equation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>270</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Physics and simulation of optoelectronic devices</s1>
<s2>18</s2>
<s3>San Francisco CA USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003972 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003972 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0417240
   |texte=   Saturation characteristics of InGaAsP-InP bulk SOA
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024